3.135 \(\int \frac{A+B x^2}{x^3 \sqrt{b x^2+c x^4}} \, dx\)

Optimal. Leaf size=61 \[ -\frac{\sqrt{b x^2+c x^4} (3 b B-2 A c)}{3 b^2 x^2}-\frac{A \sqrt{b x^2+c x^4}}{3 b x^4} \]

[Out]

-(A*Sqrt[b*x^2 + c*x^4])/(3*b*x^4) - ((3*b*B - 2*A*c)*Sqrt[b*x^2 + c*x^4])/(3*b^2*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.1684, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {2034, 792, 650} \[ -\frac{\sqrt{b x^2+c x^4} (3 b B-2 A c)}{3 b^2 x^2}-\frac{A \sqrt{b x^2+c x^4}}{3 b x^4} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(x^3*Sqrt[b*x^2 + c*x^4]),x]

[Out]

-(A*Sqrt[b*x^2 + c*x^4])/(3*b*x^4) - ((3*b*B - 2*A*c)*Sqrt[b*x^2 + c*x^4])/(3*b^2*x^2)

Rule 2034

Int[(x_)^(m_.)*((b_.)*(x_)^(k_.) + (a_.)*(x_)^(j_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n
, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a*x^Simplify[j/n] + b*x^Simplify[k/n])^p*(c + d*x)^q, x], x, x^n], x]
 /; FreeQ[{a, b, c, d, j, k, m, n, p, q}, x] &&  !IntegerQ[p] && NeQ[k, j] && IntegerQ[Simplify[j/n]] && Integ
erQ[Simplify[k/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 792

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d*g - e*f)*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/((2*c*d - b*e)*(m + p + 1)), x] + Dist[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((L
tQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]

Rule 650

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((p + 1)*(2*c*d - b*e)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
 EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin{align*} \int \frac{A+B x^2}{x^3 \sqrt{b x^2+c x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{A+B x}{x^2 \sqrt{b x+c x^2}} \, dx,x,x^2\right )\\ &=-\frac{A \sqrt{b x^2+c x^4}}{3 b x^4}+\frac{\left (-2 (-b B+A c)+\frac{1}{2} (-b B+2 A c)\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{b x+c x^2}} \, dx,x,x^2\right )}{3 b}\\ &=-\frac{A \sqrt{b x^2+c x^4}}{3 b x^4}-\frac{(3 b B-2 A c) \sqrt{b x^2+c x^4}}{3 b^2 x^2}\\ \end{align*}

Mathematica [A]  time = 0.0238092, size = 43, normalized size = 0.7 \[ -\frac{\sqrt{x^2 \left (b+c x^2\right )} \left (A \left (b-2 c x^2\right )+3 b B x^2\right )}{3 b^2 x^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(x^3*Sqrt[b*x^2 + c*x^4]),x]

[Out]

-(Sqrt[x^2*(b + c*x^2)]*(3*b*B*x^2 + A*(b - 2*c*x^2)))/(3*b^2*x^4)

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 47, normalized size = 0.8 \begin{align*} -{\frac{ \left ( c{x}^{2}+b \right ) \left ( -2\,A{x}^{2}c+3\,B{x}^{2}b+Ab \right ) }{3\,{b}^{2}{x}^{2}}{\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/x^3/(c*x^4+b*x^2)^(1/2),x)

[Out]

-1/3*(c*x^2+b)*(-2*A*c*x^2+3*B*b*x^2+A*b)/x^2/b^2/(c*x^4+b*x^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^3/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.07458, size = 86, normalized size = 1.41 \begin{align*} -\frac{\sqrt{c x^{4} + b x^{2}}{\left ({\left (3 \, B b - 2 \, A c\right )} x^{2} + A b\right )}}{3 \, b^{2} x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^3/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

-1/3*sqrt(c*x^4 + b*x^2)*((3*B*b - 2*A*c)*x^2 + A*b)/(b^2*x^4)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B x^{2}}{x^{3} \sqrt{x^{2} \left (b + c x^{2}\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/x**3/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral((A + B*x**2)/(x**3*sqrt(x**2*(b + c*x**2))), x)

________________________________________________________________________________________

Giac [A]  time = 1.16651, size = 58, normalized size = 0.95 \begin{align*} -\frac{3 \, B b \sqrt{c + \frac{b}{x^{2}}} + A{\left (c + \frac{b}{x^{2}}\right )}^{\frac{3}{2}} - 3 \, A \sqrt{c + \frac{b}{x^{2}}} c}{3 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^3/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

-1/3*(3*B*b*sqrt(c + b/x^2) + A*(c + b/x^2)^(3/2) - 3*A*sqrt(c + b/x^2)*c)/b^2